Adult Guidelines for Assessment and Management of Nausea and Vomiting

To Prevent and Manage Nausea and Vomiting Induced by Anticancer Agents Or Related to Other Oncologic Etiologies

Iman Suliman, PharmD, BCACP, Victor Phantomvanit, PharmD, BCOP, Leila Rostamnjad, PharmD, BCOP, Gayle Blouin, PharmD, BCOP, Bridget Scullion, PharmD, BCOP

2023

Please visit pinkbook.dfci.org for downloadable versions of this and other resources
Table of Contents

Pathophysiology of Nausea/Vomiting 3

Possible Etiologies of Nausea/Vomiting 4

Assessment of the Patient with Nausea/Vomiting 4

Chemotherapy-Induced Nausea/Vomiting (CINV):

- Risk Factors/ Protective Factors 5
- Related Definitions 5
- General Management Concepts 6

Emetogenicity of Intravenous Anticancer Agents 7-8

Emetogenicity of Oral Anticancer Agents 9

Combination & Consecutive-day Chemotherapy Regimens 10

Suggested Prophylactic Antiemetic Management of CINV for:

- Highly Emetogenic Chemotherapy 11
- Moderately Emetogenic Chemotherapy 12
- Low Emetogenic Chemotherapy 13
- Minimally Emetogenic Chemotherapy 13
- Oral Chemotherapy 13
- Special Circumstances 13

Radiation-Induced Nausea/Vomiting 14

Refractory Nausea/Vomiting 14

Classes of Commonly Used Antiemetics 15-16

Extrapyramidal Symptoms (EPS) 17

Movement Disorder Screening 18
Pathophysiology of Nausea and Vomiting

CNS

Chemotherapy

Trigger Zone (CTZ)

Vomiting Center

Periphery

Vagus Nerve

Memory
Fear
Anticipation
Sensory Input

Higher Cortical Centers

Chemotherapy
Radiotherapy

Mechano- and Chemoreceptors

SHT3
D2
CBD1

ACH
NK1

Hist
CBD 1,2

= serotonin receptor
= dopamine-2 receptor
= histamine receptor
= acetylcholine receptor
= neurokinin-1 receptor
= cannabinoid-1,2

Patient Assessment for Nausea and Vomiting

History: past antiemetics use/effects.

Nausea intensity (0-10), duration, description.

Aggravating or activating factors (thought/smell of food, eating, drinking, not eating, medications, movement, time of day).

Quality of life disturbances resulting from nausea and vomiting.

Symptoms associated with nausea/vomiting: Dizziness, fatigue, anxiety/depression, sweating, pain, constipation/diarrhea.

Emetic episodes per 24 hours.

Alleviating factors: Distraction, lying down, medication, food, vomiting, time.
Chemotherapy-Induced Nausea and Vomiting (CINV)

Risk Factors
- H/o GI conditions
- Younger than 50
- Female
- Past nausea/vomiting associated with chemotherapy
- Hyperemesis gravidarum
- H/o motion sickness

Protective Factors
- High alcohol consumption (greater than 5 alcoholic drinks per day)

CINV Related Definitions

Acute chemotherapy induced nausea and vomiting usually begins within minutes to hours after chemotherapy and lasts up to 24 hours.

Delayed nausea and vomiting develops more than 24 hours after chemotherapy and may last several days.

Anticipatory nausea and vomiting begins before chemotherapy, and is often associated with poorly controlled acute and delayed nausea and vomiting.

Breakthrough nausea and vomiting occurs despite preventive therapy and is treated with an as needed regimen.

Refractory nausea and vomiting occurs when antiemetic prophylaxis and/or rescue have failed. See page 14 for therapy considerations.

Classification of anticancer agent emetogenicity
Emetogenicity is based on the percentage of patients who experience emesis in the absence of effective antiemetic prophylaxis.

Chemotherapy/biotherapy
All anticancer agents used to treat cancer, given through oral and parenteral routes or other routes as specified as the standard. Types include targeted agents, cytotoxic agents, immunotherapies, and biologics, when used for the purpose of treating malignancy or similar proliferative diseases, or as conditioning for cellular therapies.
General Concepts in the Management of CINV

Goal: To prevent nausea/vomiting in patients receiving anticancer agents.

Antiemetic selection:
- Selection of an appropriate antiemetic regimen should be based on the emetic risk of anticancer agents, prior experience with antiemetics, and patient-specific risk factors (see page 5).
- The emetic risk for biosimilars is expected to be the same as the parent compound.
- The health literacy of the patient must also be considered, including sociocultural differences, language, and literacy barriers and addressed with effective provider-patient communication. Resources such as printed calendars and interpreter services can help address communication barriers.

Route of administration:
- Oral and intravenous antiemetic formulations have equivalent efficacy when used at appropriate doses.
- Continuous infusion of chemotherapy may make an agent less emetogenic.

Anticipatory, anxiety-related nausea and vomiting: May respond to prophylactic use of anti-anxiety agents (e.g. lorazepam by mouth the night before treatment and the next day 1–2 hours before anticancer therapy begins) and behavioral interventions (e.g. meditation, relaxation, hypnosis) along with aggressive control of acute and delayed nausea/vomiting and avoiding smells that may precipitate symptoms.

Delayed nausea: For regimens that are frequently associated with delayed nausea/vomiting, treat patient with **scheduled** oral antiemetics that include dexamethasone. Olanzapine may also be considered. Carboplatin, cisplatin, oxaliplatin, cyclophosphamide, and doxorubicin are frequently associated with delayed nausea and vomiting.

Other etiologies: Other possible etiologies of nausea/vomiting should be addressed and properly managed (e.g. use of H2 blockers or proton pump inhibitors* for management of dyspepsia which may mimic nausea).

*Caution: potential drug interactions with TKIs

Combination antiemetic treatment: Has been shown to improve the efficacy of the primary antiemetic. However, **do not** use two agents from the same class of antiemetics in combination (e.g. metoclopramide and prochlorperazine); this can significantly increase the side effects and does not increase efficacy (see pages 15&16). Olanzapine should be used with caution in combination with other dopamine antagonists and other CNS depressants.
Emetogenic Potential of Intravenous Anticancer Agents

High emetic risk (> 90% frequency of emesis):	• AC combination (any regimen w/ an anthracycline and cyclophosphamide)	• Epirubicin > 90 mg/m²
	• Carboplatin AUC ≥ 4	• Fam-trastuzumab deruxtecan-nxki
	• Carmustine > 250 mg/m²	• Ifosfamide ≥ 2,000 mg/m² per dose
	• Cisplatin	• Mechlorethamine
	• Cyclophosphamide > 1,500 mg/m²	• Melphalan ≥140 mg/m²
	• Dacarbazine	• Saituzumab govitecan-hziy
	• Doxorubicin ≥ 60 mg/m²	• Streptozocin

Moderate emetic risk (30-90% frequency of emesis):	• Aldesleukin > 12-15 million international units/m²	• Dual-drug liposomal encapsulation of cytarabine and daunorubicin
	• Amifostine > 300 mg/m²	• Epirubicin ≤ 90 mg/m²
	• Bendamustine	• Idarubicin
	• Busulfan	• Ifosfamide < 2,000 mg/m² per dose
	• Carboplatin AUC < 4	• Irinotecan
	• Carmustine ≤ 250 mg/m²	• Irinotecan liposomal
	• Clofarabine	• Lurbinectedin
	• Cyclophosphamide ≤ 1,500 mg/m²	• Melphalan < 140 mg/m²
	• Cytarabine > 200 mg/m²	• Methotrexate ≥ 250 mg/m²
	• Dactinomycin	• Mirvetuximab soravtansine-gynx⁺
	• Daunorubicin	• Naxitamab-ggkg
	• Dual-drug liposomal encapsulation of cytarabine and daunorubicin	• Oxaliplatin
	• Dinutuximab	• Romidepsin
	• Doxorubicin < 60 mg/m²	• Temozolomide
		• Trabectedin

Low emetic risk (10-30% frequency of emesis):	• Ado-trastuzumab emtansine	• Ixabepilone
	• Aldesleukin ≤ 12 million IU/m²	• Lisocabtagene maraleucel
	• Amifostine < 300 mg/m²	• Loncastuximab tesirine-lpyl
	• Amivantamab-vmjjw	• Methotrexate > 50 – <250 mg/m²
	• Arsenic trioxide	• Mitomycin
	• Axicabtagene ciloleucel	• Mitomycin pyelocalyceal solution
	• Azacitidine	• Mitoxantrone
	• Belinostat	• Mogamulizumab-kpc
		• Mosunetuzumab-axgb⁺
	• Brentuximab vedotin	• Moxetumomab pasudotox-tdfk
	• Brexucabtagene autoleucel	• Nectumab
	• Cabazitaxel	• Omacetaxine
	• Carfilzomib	• Paclitaxel
	• Ciltacabtagene autoleucel	• Paclitaxel, albumin bound
	• Copanlisib	• Pemetrexed
	• Cytarabine 100-200 mg/m²	• Pentostatin
	• Docetaxel	• Polatuzumab vedotin-piig
	• Doxorubicin liposomal	• Pralatrexate
	• Enfortumab vedotin-ejfv	• Tafasitamab-cxix
	• Eribulin	• Tagraxofusp-ersz
	• Etoposide	• Talimogene laherparepvec
	• 5-fluorouracil	• Tebentafusp-tebn
	• Flouxuridine	• Thiotepa
	• Gemcitabine	• Tisagenlecleucel
	• Gemtuzumab ozogamicin	• Tisotumab vedotin-tftv
	• Idecabtagene vicleucel	• Topotecan
	• Inotuzumab ozogamicin	• Ziv-afibercept
	• Isatuximab-irfc	

(continued...)

(continued...)
| Minimal emetic risk (< 10% frequency of emesis): | ▪ Alemtuzumab
▪ Asparaginase*
▪ Atezolizumab
▪ Avelumab
▪ Belantamab mafodotin-blmf
▪ Bevacizumab
▪ Bleomycin
▪ Blinatumomab
▪ Bortezomib
▪ Cemiplimab-rwlc
▪ Cetuximab
▪ Cladribine (2-chlorodeoxyadenosine)
▪ Cytarabine < 100 mg/m²
▪ Daratumumab
▪ Daratumumab and hyaluronidase-fiij
▪ Decitabine
▪ Dexrazoxane
▪ Dostarlimab-gxly
▪ Durvalumab
▪ Elotuzumab
▪ Fludarabine
▪ Ipilimumab
▪ Luspatercept-aamt
▪ Margetuximab-cmkb
▪ Methotrexate ≤ 50 mg/m²
▪ Nelarabine | ▪ Nivolumab
▪ Nivolumab/relatlimab-rmbw
▪ Obinutuzumab
▪ Ofatumumab
▪ Panitumumab
▪ Pembrolizumab
▪ Pertuzumab
▪ Pertuzumab/trastuzumab and hyaluronidase-zzxf
▪ Ramucirumab
▪ Rituximab
▪ Rituximab and hyaluronidase
▪ Siltuximab
▪ Sirolimus-albumin
▪ Tecristimab-cqyv
▪ Temsirolimus
▪ Trastuzumab
▪ Trastuzumab and hyaluronidase-osyk
▪ Tremelimumab-actl
▪ Valrubicin
▪ Vinblastine
▪ Vincristine
▪ Vincristine (liposomal)
▪ Vinorelbine |

* Asparaginase includes pegasparaginase, asparaginase erwinia chrysanthemi, and asparaginase erwinia chrysanthemi (recombinant)-rywm.

† FDA approved post 2023 NCCN Guideline Update

Adapted from NCCN Clinical Practice Guidelines in Oncology. V.1.2023. Antiemesis.
Emetogenic Potential of Oral Anticancer Agents

Moderate-high emetic risk (≥30% frequency of emesis): Required prophylaxis on days of oral anticancer agent administration	Azaclotide	Busulfan > 4 mg/day	Ceritnib	Cyclophosphamide ≥ 100 mg/m²/day	Fedratinib	Lomustine (single day)	Midostaurin	Mitotane	Mobocertinib	Selinexor	Temozolomide > 75 mg/m²/day																															
Moderate-high emetic risk (≥30% frequency of emesis): As needed (PRN) dosing is initially appropriate on days of oral anticancer agent administration	Adagrasib*	Amapritnib	Binimetinib	Bosutinib > 400 mg/day	Cabozantinib	Crizotinib	Dabrafenib	Enasidenib	Encorafenib	Estramustine	Etoposide	Imatinib >400 mg/day	Lenvatinib >12 mg/day	Niraparib	Olaparib	Procabazine	Rucaparib																									
Minimal-low emetic risk (<30% frequency of emesis):	Abemaciclib	Acalabrutinib	Afatinib	Alpelisib	Asclinimid	Axitinib	Belzutifan	Bexarotene	Bosutinib ≤ 400 mg/day	Brigitinib	Busulfan < 4 mg/day	Capecitabine	Capmatinib	Chlorambucil	Cobimetinib	Cyclophosphamide < 100 mg/m²/day	Dacomitinib	Dasatinib	Dabrafenib	Decitabine and cedazuridine	Duvelisib	Elacestrant*	Entrectinib	Erdafitinib	Erlotinib	Everolimus	Fludarabine	Futibatinib	Gefitinib	Gilteritinib	Glasdegib	Hydroxyurea	Ibrutinib	Idelalisib	Imatinib ≤ 400 mg/day	Ivosidenib	Ixazomib	Lapatinib	Larotrectinib	Lenalodomide	Lenvatinib ≤12 mg/day	Lorlatinib

* FDA approved post 2023 NCCN Guideline Update

Adapted from NCCN Clinical Practice Guidelines in Oncology. V.1.2023. Antiemesis.
Combination Chemotherapy Regimens

- Give agents that are effective for the highest emetogenic risk level of any single agent in the regimen (e.g. cisplatin and etoposide: use agents recommended for cisplatin) with the exception of anthracycline and cyclophosphamide combinations which synergistically lead to high emetogenicity.
- Select combination regimens of moderately emetogenic therapy may be classified as highly emetogenic chemotherapy based on clinical experience. Examples include doxorubicin/cyclophosphamide (AC) for breast cancer, and FOLFIRINOX (fluorouracil, irinotecan, oxaliplatin, leucovorin calcium) for pancreatic cancer.

Consecutive-day Chemotherapy Regimens

- Risk of acute and delayed nausea/vomiting is based on the risk of each agent.
- Antiemetic prophylaxis for a given day should be based on the agent with the highest emetogenicity administered on that day.
- Prophylaxis for delayed nausea/vomiting should continue for 2-3 days after the last dose of high- to moderately emetogenic chemotherapy.
Suggested Antiemetics for Highly Emetogenic Chemotherapy (HEC)

<table>
<thead>
<tr>
<th>Day 1 (30 minutes prior to chemotherapy)</th>
<th>Days 2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• NK1 receptor antagonist PO* or IV</td>
<td>• Dexamethasone 8 mg PO daily</td>
</tr>
<tr>
<td>• 5HT3 receptor antagonist PO or IV</td>
<td>• +/- Olanzapine 5-10 mg PO daily</td>
</tr>
<tr>
<td>• Dexamethasone 12 mg PO or IV</td>
<td></td>
</tr>
<tr>
<td>• +/- Olanzapine 5-10 mg PO once</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Pearls for Highly Emetogenic Chemotherapy

• In HEC treatment regimens where the HEC is only given on day 1 and not days 8 or 15, the NK1 antagonist is only given on day 1 (e.g. cisplatin/gemcitabine or cisplatin/navelbine).

• For HEC regimens given over consecutive days (e.g. 3-5 days of cisplatin), the NK-1 antagonist is given on day 1. For select NK1 receptor antagonists, a repeat dose may be necessary to cover the delayed CINV period (e.g. day 5 administration of fosaprepitant in a 5-day cisplatin regimen).

• Emerging data suggests dexamethasone doses may be individualized by giving higher, lower, or eliminating dexamethasone on subsequent days. Consider other antiemetics if eliminated. According to the ASCO 2017 Antiemetic Guideline Update, dexamethasone may be omitted in the delayed setting for AC containing chemotherapy regimens.

• In-clinic dexamethasone should be held if patient took sufficient corticosteroid pre-medication at home on the day of chemotherapy.

• Olanzapine may be added to cisplatin and other highly emetogenic chemotherapy regimens especially where nausea is a concern, and has been found to be efficacious at 5 mg.
 o Use caution and strongly consider starting at 5 mg in high-risk patients such as:
 ▪ Patients who are older (> 65 years)
 ▪ Patients taking other CNS depressants or are over sedated
 ▪ Patients at risk of orthostatic hypotension
 o Recommend taking at bedtime.
 o If used prophylactically as part of the antiemetic regimen, olanzapine may be used once daily (prior to chemotherapy or at bedtime) and continued for 2–3 days after chemotherapy for regimens that are likely to cause significant delayed emesis.

• In selected HEC and MEC regimens, ondansetron may be replaced with palonosetron 0.25 mg IV prior to chemotherapy. This requires the discontinuation of all other 5HT3 antagonists, including those taken at home, for 48 hours after palonosetron is administered.

• Consider H2 blocker or PPI if patient exhibits reflux symptoms.

• *If oral aprepitant is used on day 1, course must be completed with doses on days 2-3.
Suggested Antiemetics for Moderately Emetogenic Chemotherapy (MEC)

<table>
<thead>
<tr>
<th>Day 1 (30 minutes prior to chemotherapy)</th>
<th>Days 2-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 5HT3 receptor antagonist PO or IV</td>
<td>Dexamethasone 8 mg PO daily</td>
</tr>
<tr>
<td>• Dexamethasone 12 mg PO or IV</td>
<td></td>
</tr>
<tr>
<td>• +/- NK1 receptor antagonist</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Pearls for Moderately Emetogenic Chemotherapy

- Dexamethasone may be omitted in the delayed setting for regimens in which delayed CINV is not common.

- In-clinic dexamethasone should be held if patient took sufficient corticosteroid pre-medication at home on the day of chemotherapy.

- NK1 receptor antagonist may be added for prevention of nausea and vomiting from moderately emetogenic chemotherapy regimens in patients with refractory nausea and vomiting from previous regimens/cycles or other risk factors (see page 5).

- In selected MEC and HEC regimens, ondansetron may be replaced with palonosetron 0.25 mg IV prior to chemotherapy. This requires the discontinuation of all other 5HT3 antagonists, including those taken at home, for 48 hours after palonosetron is administered.

- Consider H2 blocker or PPI if patient exhibits reflux symptoms.
Suggested Antiemetics for Low Emetogenic Chemotherapy

Prophylaxis may consist of one dose before treatment of any ONE of the following:
- Dexamethasone 8-12 mg PO or IV
- Ondansetron 8-16 mg PO
- Metoclopramide 10-20 mg PO or IV
- Prochlorperazine 10 mg PO or IV

Suggested Antiemetics for Minimally Emetogenic Chemotherapy

Routine prophylaxis is not necessary for minimally emetogenic chemotherapy.

Suggested Antiemetics for Oral Chemotherapy

- Ondansetron 8 – 16 mg daily is recommended for highly and moderately emetogenic ORAL anticancer agents requiring daily CINV prophylaxis. Start prior to anticancer therapy.
- As needed (PRN) use is recommended for low to minimally emetogenic ORAL anticancer agents.

Suggested Modifications for Specific Circumstances

- Chimeric antigen receptor (CAR) T-cell therapy: avoid corticosteroid antiemetic premedication for 3–5 days prior to and 90 days after CAR T-cell therapies. *Corticosteroids may be resumed if needed upon progression of disease.*
- Lymphodepleting chemotherapy: employ a corticosteroid-sparing approach to antiemetic prophylaxis
Suggested Antiemetics for Radiation-Induced Emesis

<table>
<thead>
<tr>
<th>Emetic risk*</th>
<th>Radiation field</th>
<th>Recommended prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (>90%)</td>
<td>Total-body irradiation</td>
<td>Ondansetron 8-24 mg/day +/- corticosteroid prior to each fraction (eg. dexamethasone 4 mg daily)</td>
</tr>
<tr>
<td>Moderate (30-90%)</td>
<td>Upper abdomen, craniospinal irradiation</td>
<td>Ondansetron 8-16 mg/day +/- corticosteroid prior to each fraction</td>
</tr>
<tr>
<td>Low (10-30%)</td>
<td>Brain, head and neck, thorax, pelvis</td>
<td>No routine prophylaxis recommended</td>
</tr>
<tr>
<td>Minimal (<10%)</td>
<td>Extremities, Breast</td>
<td>No routine prophylaxis recommended</td>
</tr>
</tbody>
</table>

*Combination radiation with chemotherapy antiemetic prophylaxis is based upon the modality (radiation or chemotherapy) with the highest emetic risk.

Refractory Chemotherapy-Induced Nausea and Vomiting

If initial therapy is ineffective:
1. Reevaluate for additional cause(s) (see page 4).
2. Increase dose of selected agent(s) (see pages 15&16).
3. Ensure patient’s antiemetic regimen includes both scheduled and as needed agents.
4. Consider adding an additional agent or rotating to a different drug in the same class.
 - Additional agents to consider include (see chart on pages 15&16):
 - Corticosteroid
 - Ondansetron (If the patient has not received palonosetron within the last 48-72 hours)
 - NK1 receptor antagonist (only if patient receiving a corticosteroid and 5HT3 receptor antagonist).
 - NK1 receptor antagonists should not be used to treat ongoing nausea and vomiting rather used in the prophylactic setting on subsequent cycles of chemotherapy. Additional doses post-chemotherapy have not been shown to be efficacious.
 - Olanzapine (use caution in combination with dopamine antagonists due to similar MOA; consider discontinuation of prochlorperazine, metoclopramide or haloperidol)
 - Rotate to a different dopamine antagonist (e.g. haloperidol, metoclopramide)
 - In refractory setting, palonosetron may be substituted for ondansetron.
 - Consider H2 blocker or PPI if patient exhibits reflux symptoms.
 - Cannabinoids – dronabinol (Marinol, Syndros), nabilone (Cesamet).

Note: excessive non-pharmaceutical cannabinoid use can lead to cannabinoid hyperemesis. Please assess patient’s medical cannabis use.
Classes of Commonly Used Antiemetics

<table>
<thead>
<tr>
<th>Classes of Commonly Used Antiemetics</th>
<th>Dose/Routes</th>
<th>Side effects/Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serotonin Antagonists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ondansetron* (Zofran®)</td>
<td>8-24 mg IV/PO/day</td>
<td>Constipation (provide prophylactic bowel management)</td>
</tr>
<tr>
<td></td>
<td>MAX single IV dose is 16 mg</td>
<td>QT prolongation</td>
</tr>
<tr>
<td>Palonosetron* (Aloxi®)</td>
<td>0.25 mg IV x 1 (may repeat in 48-72 hours with multi-day chemo regimens)</td>
<td>Infusion site reactions; IV contains polysorbate 80 = risk of HSR ↑ dexamethasone levels ↓ warfarin levels (monitor INR closely)</td>
</tr>
<tr>
<td>Granisetron* (Kytril®)</td>
<td>10 mcg/kg IV (MAX 1 mg IV) OR 2mg PO once OR 10 mg SQ once OR 3.1 mg/24-h transdermal patch applied 24–48 h prior to first dose of anticancer therapy</td>
<td>Does not contain polysorbate 80 110 mg dose to be followed day aprepitant 80 mg on days 2, 3</td>
</tr>
<tr>
<td>Dolasetron* (Anzemet®)</td>
<td>100 mg PO daily</td>
<td>↑ Thoridazine and Pimozide- avoid combo Monitor digoxin and warfarin Monitor AEs of BCRP substrates (methotrexate, topotecan, irinotecan) May increase levels of antidepressants (due to CYP2D6 inhibition)</td>
</tr>
<tr>
<td>Substance P (NK1) Antagonists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aprepitant (Emend®)</td>
<td>125 mg PO day 1 80 mg PO days 2-3</td>
<td>Infusion site reactions; IV contains polysorbate 80 = risk of HSR ↑ dexamethasone levels ↓ warfarin levels (monitor INR closely)</td>
</tr>
<tr>
<td>Fosaprepitant (Emend IV®)</td>
<td>150 mg IV on day 1</td>
<td></td>
</tr>
<tr>
<td>Aprepitant injectable emulsion (Cinvanti®)</td>
<td>130 mg IV day 1 (highly emetogenic) 110 mg IV day 1 (moderately emetogenic)</td>
<td></td>
</tr>
<tr>
<td>Netupitant/palonosetron (Akynzeo®)</td>
<td>300 mg / 0.5 mg PO day 1</td>
<td>Available as fixed combination product only</td>
</tr>
<tr>
<td>Fosnetupitant/palonosetron (Akynzeo®)</td>
<td>235 mg / 0.25 mg IV day 1</td>
<td>Available as fixed combination product only</td>
</tr>
<tr>
<td>Rolapitant (Varubi®)</td>
<td>180 mg PO day 1 OR 166.5 mg IV day 1</td>
<td></td>
</tr>
<tr>
<td>Dopamine Antagonists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prochlorperazine* (Compazine®)</td>
<td>10 mg PO TID-QID (max 40 mg/day) 25 mg PR BID</td>
<td>EPS (see page 17 for definitions and management) QT prolongation</td>
</tr>
<tr>
<td>Perphenazine (Trilafon®)</td>
<td>2-8 mg PO q 4-6 hours (max 24 mg/day)</td>
<td></td>
</tr>
<tr>
<td>Metoclopramide* (Reglan®)</td>
<td>10-40 mg PO/IV TID-QID</td>
<td></td>
</tr>
<tr>
<td>Haloperidol* (Haldol®)</td>
<td>0.5-2 mg IV/PO q 4-8 hours</td>
<td></td>
</tr>
<tr>
<td>Droperidol* (Inapsine®)</td>
<td>2.5-5 mg IV q 3-4 hours</td>
<td></td>
</tr>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dexamethasone (Decadron®)</td>
<td>4-20 mg PO/IV daily-bid</td>
<td>Delirium, anxiety, insomnia (reduce dose if possible), hiccups, increased serum glucose (caution in patients with diabetes mellitus), dyspepsia (take with food to minimize), facial erythema</td>
</tr>
<tr>
<td>Methylprednisolone (Solu-medrol®)</td>
<td>50-100 mg IV daily</td>
<td></td>
</tr>
</tbody>
</table>
Classes of Commonly Used Antiemetics (continued)

<table>
<thead>
<tr>
<th>Atypical Antipsychotics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Olanzapine (Zyprexa®)</td>
<td>2.5-10 mg PO daily</td>
<td>Sedation, orthostatic hypotension, Consider lower dose for older, frail, debilitated patients</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antihistamines</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimenhydrinate (Dramamine®)</td>
<td>50-100 mg PO/IV q 4-6 hours</td>
<td>Sedation, confusion (especially in patients ≥ 65 years)</td>
</tr>
<tr>
<td>Meclizine (Antivert®)</td>
<td>25-50 mg PO daily</td>
<td></td>
</tr>
<tr>
<td>Promethazine (Phenergan®)</td>
<td>12.5-25 mg PO/PR q 4 hours</td>
<td>Avoid use of promethazine with dopamine antagonists due to similar MOA</td>
</tr>
<tr>
<td>Trimethobenzamide (Tigan®)</td>
<td>300 mg PO TID-QID 200mg PR TID-QID</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anticholinergics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scopolamine (Transderm Scop®)</td>
<td>1.5-3 mg TD q 72 h</td>
<td>Dry mouth, blurred vision, delirium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cannabinoids</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dronabinol (Marinol®)</td>
<td>2.5-10 mg PO BID-TID</td>
<td>Confusion, ataxia</td>
</tr>
<tr>
<td>Nabilone (Cesamet®)</td>
<td>1-2 mg PO BID</td>
<td></td>
</tr>
<tr>
<td>Dronabinol (Syndros®)</td>
<td>2.1 mg/m²-4.2 mg/m² 1-3 hours prior to chemo then every 2-4 hours post chemo</td>
<td>Oral Solution 5 mg/ml (2.1 mg = 2.5 mg capsules)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anxiolytics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorazepam (Ativan®)</td>
<td>0.5-1 mg PO/IV/SL q 6 hours</td>
<td>Confusion, sedation Start with 0.5 mg in older patients, benzodiazepine naïve patients, or concomitant opioid use Use caution in patients at risk for falls or at risk for dependence Use the lowest effective dose and widest dosage interval possible</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H2 Blockers/ PPIs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Famotidine (Pepcid®)</td>
<td>10-20 mg PO BID</td>
<td>May interfere with absorption of other drugs, including oral anticancer agents</td>
</tr>
<tr>
<td>Omeprazole (Prilosec®)</td>
<td>20 mg PO daily - BID</td>
<td></td>
</tr>
</tbody>
</table>

¥ These medications have been known to prolong the QTc interval and lead to Torsades de Pointes. EKG monitoring is recommended when using these medications with other QTc prolonging medications (e.g. methadone) or in patients with a previous prolonged QTc.
Extrapyramidal Symptoms (EPS)/Movement Disorders

Many antiemetics are related to the antipsychotic class of medications and therefore pose a risk of movement disorders including: akathisia, extrapyramidal side effects, Tardive Dyskinesia (TD), and Parkinsonism.

Akathisia

Motor restlessness manifesting as inability to keep still, rocking back and forth, purposeless shaking of foot/leg, or pacing.
- Reduce or stop the agent if possible
- Add beta blocker (propranolol preferred)
- **NOT** effective: anticholinergics (diphenhydramine, benztropine)

Dystonic reactions

Acute onset of muscle spasm, commonly involving neck muscles (torticollis). Can be very painful and poses the highest risk in young males, but can be seen in all age groups and can occur after a single dose.
- Reduce or stop the agent if possible
- Benztropine 1-2 mg PO daily or BID (may give first dose IV) or diphenhydramine 25-50 mg PO/IV Q 4-6 hours PRN
 - If intolerant to anticholinergics, consider amantadine 100 mg PO BID-TID.
- Benzodiazepine (lorazepam, clonazepam)

Parkinsonism

May be reported as a new tremor, sense of being slowed down or stiff movements; manifest as “pill rolling” tremor at rest, cogwheeling, bradykinesia, and even mask-like facies. Patients can seem more depressed, stooped and slowed.
- Reduce or stop the agent if possible
- Benztropine 1-2 mg PO daily or BID (may give first dose IV) or diphenhydramine 25-50 mg PO/IV Q 4-6 hours PRN
- Amantadine 100 mg PO BID-TID

Tardive dyskinesia (TD)

Irregular stereotyped or choreoathetoid movements which are under temporary volitional control and are ameliorated by action and sleep and augmented by distraction and stress. Patients are often not aware or distressed despite visually obvious movements.
- Stop the agent if possible
- **May not resolve if treatment is continued**

Manifestations of TD-
- **Orofacial:** (most common) lip smacking, chewing, tongue thrusting, lateral jaw movements, grimacing, eye blinking.
- **Limb:** fidgety movements of hands and feet, or writhing (athetoid) movements.
- **Trunk:** slow, writhing movements.
- **Respiratory:** asynchronous breathing, tachypnea, or grunting due to diaphragmatic involvement. May be misinterpreted as anxiety or COPD.
- **Speech:** impaired phonation and articulation due to tongue, laryngeal, and diaphragmatic involvement. Speech may be unintelligible.

Note: New onset EPS have been reported with all of the antipsychotic agents, although the reported incidence of EPS in association with the newer antipsychotics (atypicals or second-generation) is lower than with conventional agents.
Movement Disorder Screening

For patients on neuroleptics*, metoclopramide+, or prochlorperazine:

Every visit watch for **PUR**

- **Postural abnormalities**
 - Pregnancy stance
 - Pelvic thrust
 - Altered gait

- **Unintentional movements**
 - Finger tap
 - Mouth and leg movement

- **Restless**
 - Hands, arms, and legs

*chlorpromazine, thioridazine, haloperidol, clozapine, risperidone, olanzapine, quetiapine
+the FDA recommends short-term use (<12 weeks) of metoclopramide to decrease risk of tardive dyskenisia

If a patient is believed to be exhibiting signs of a movement disorder, the use of the Abnormal Involuntary Movement Scale (AIMS) is recommended. An example of this scale can be found at: https://www.ohsu.edu/sites/default/files/2019-10/%28AIMS%29%20Abnormal%20Involuntary%20Movement%20Scale.pdf
References

Hatoum H, Lin SJ, Buchner D, Cox D. Comparative Clinical Effectiveness of Various 5-HT3 RA Antiemetic Regimens on Chemotherapy Induced Nausea and Vomiting Associated with Hospital and Emergency Department Visits in Real World Practice. Support Care Cancer. 2011 May 1.

Clark K, Lam L, Currow D. Reducing gastric secretions – a role for histamine 2 antagonists or proton pump inhibitors in malignant bowel obstruction? Support Care Cancer 2009;17:1463e1468.